La teoría de juegos es un área de la matemática aplicada que utiliza modelos para estudiar interacciones en estructuras formalizadas de incentivos (los llamados juegos) y llevar a cabo procesos de decisión. Sus investigadores estudian las estrategias óptimas así como el comportamiento previsto y observado de individuos en juegos. Tipos de interacción aparentemente distintos pueden, en realidad, presentar estructuras de incentivos similares y, por lo tanto, representar conjuntamente un mismo juego.
Desarrollada en sus comienzos como una herramienta para entender el comportamiento de la economía, la teoría de juegos se usa actualmente en muchos campos, desde la biología a la filosofía. Experimentó un crecimiento sustancial y se formalizó por primera vez a partir de los trabajos de John von Neumann y Oskar Morgenstern, antes y durante la Guerra Fría, debido sobre todo a su aplicación a la estrategia militar —en particular a causa del concepto de destrucción mutua garantizada. Desde los setenta, la teoría de juegos se ha aplicado a la conducta animal, incluyendo el desarrollo de las especies por la selección natural. A raíz de juegos como el dilema del prisionero, en los que el egoísmo generalizado perjudica a los jugadores, la teoría de juegos se ha usado en ciencia política, ética y filosofía. Finalmente, ha atraído también la atención de los investigadores en informática, usándose en inteligencia artificial y cibernética.
Aunque tiene algunos puntos en común con la teoría de la decisión, la teoría de juegos estudia decisiones realizadas en entornos donde interaccionan. En otras palabras, estudia la elección de la conducta óptima cuando los costes y los beneficios de cada opción no están fijados de antemano, sino que dependen de las elecciones de otros individuos. Un ejemplo muy conocido de la aplicación de la teoría de juegos a la vida real es el dilema del prisionero, popularizado por el matemático Albert W. Tucker, el cual tiene muchas implicaciones para comprender la naturaleza de la cooperación humana.
Los analistas de juegos utilizan asiduamente otras áreas de la matemática, en particular las probabilidades, las estadísticas y la programación lineal, en conjunto con la teoría de juegos.
Desarrollada en sus comienzos como una herramienta para entender el comportamiento de la economía, la teoría de juegos se usa actualmente en muchos campos, desde la biología a la filosofía. Experimentó un crecimiento sustancial y se formalizó por primera vez a partir de los trabajos de John von Neumann y Oskar Morgenstern, antes y durante la Guerra Fría, debido sobre todo a su aplicación a la estrategia militar —en particular a causa del concepto de destrucción mutua garantizada. Desde los setenta, la teoría de juegos se ha aplicado a la conducta animal, incluyendo el desarrollo de las especies por la selección natural. A raíz de juegos como el dilema del prisionero, en los que el egoísmo generalizado perjudica a los jugadores, la teoría de juegos se ha usado en ciencia política, ética y filosofía. Finalmente, ha atraído también la atención de los investigadores en informática, usándose en inteligencia artificial y cibernética.
Aunque tiene algunos puntos en común con la teoría de la decisión, la teoría de juegos estudia decisiones realizadas en entornos donde interaccionan. En otras palabras, estudia la elección de la conducta óptima cuando los costes y los beneficios de cada opción no están fijados de antemano, sino que dependen de las elecciones de otros individuos. Un ejemplo muy conocido de la aplicación de la teoría de juegos a la vida real es el dilema del prisionero, popularizado por el matemático Albert W. Tucker, el cual tiene muchas implicaciones para comprender la naturaleza de la cooperación humana.
Los analistas de juegos utilizan asiduamente otras áreas de la matemática, en particular las probabilidades, las estadísticas y la programación lineal, en conjunto con la teoría de juegos.
Los juegos estudiados por la teoría de juegos están bien definidos por objetos matemáticos. Un juego consiste en un conjunto de jugadores, un conjunto de movimientos (o estrategias) disponible para esos jugadores y una especificación de recompensas para cada combinación de estrategias. La teoría clasifica los juegos en muchas categorías que determinan qué métodos particulares se pueden aplicar para resolverlos. Uno de sus supuestos es la teoría de suma cero.
Suma cero describe una situación en la que la ganancia o pérdida de un participante se equilibra con exactitud con las pérdidas o ganancias de los otros participantes. Se llama así porque, si se suma el total de las ganancias de los participantes y se resta las pérdidas totales el resultado es cero. (El ajedrez y el póker son ejemplos de juegos de suma cero). La suma cero es un caso especial del caso más general de suma constante donde los beneficios y las pérdidas de todos los jugadores suman el mismo valor, porque se gana exactamente la cantidad que pierde el oponente. Situaciones donde los participantes pueden beneficiarse o perder al mismo tiempo, como el intercambio de productos entre una nación que produce un exceso de naranjas y otra que produce un exceso de manzanas, en la que ambas se benefician de la transacción, se denominan de "suma no nula".
La teoría de juegos tiene aplicaciones en numerosas áreas, entre las cuales caben destacar las ciencias económicas, la biología evolutiva, la psicología, las ciencias políticas, la investigación operativa, la informática y la estrategia militar.
Los economistas han usado la teoría de juegos para analizar un amplio abanico de problemas económicos, incluyendo subastas, duopolios, oligopolios, la formación de redes sociales, y sistemas de votaciones. Estas investigaciones normalmente están enfocadas a conjuntos particulares de estrategias conocidos como conceptos de solución. Estos conceptos de solución están basados normalmente en lo requerido por las normas de racionalidad perfecta. El más famoso es el equilibrio de Nash. Un conjunto de estrategias es un equilibrio de Nash si cada una representa la mejor respuesta a otras estrategias. De esta forma, si todos los jugadores están aplicando las estrategias en un equilibrio de Nash, no tienen ningún incentivo para cambiar de conducta, pues su estrategia es la mejor que pueden aplicar dadas las estrategias de los demás.
Las recompensas de los juegos normalmente representan la utilidad de los jugadores individuales. A menudo las recompensas representan dinero, que se presume corresponden a la utilidad de un individuo. Esta presunción, sin embargo, puede no ser correcta.
Un documento de teoría de juegos en economía empieza presentando un juego que es una abstracción de una situación económica particular. Se eligen una o más soluciones, y el autor demuestra qué conjunto de estrategias corresponden al equilibrio en el juego presentado.
Información seleccionada extraída de:
1 comentario:
Buena aportación, Clara. Ahora, si te parece, envía tu parecer sobre la teoría de juegos
Publicar un comentario